Accommodating Larger Vessels: Ship Maneuverability and Channel Depth;

A discussion of vessel motion in shallow water and future research needs.

PANELISTS:

Paul Amos: President, Columbia River Pilots.

Larry Daggett: Vice President, Waterway Simulation Technology. Previously with Army Corps ERDC labs.

Dan Jordan: Columbia River Bar Pilot, currently involved in a study of vessel dynamics on the Columbia River Bar.

Mike Morris: Houston Ship Channel Pilot.

Eric Burnette: Sr. Waterways Planner, Port of Portland, Oregon (moderator).

ORDER OF PRESENTATION:

1. Introduction of panelists.

2. Trends driving the discussion of vessel motion in shallow water.

Presentation on basic squat and under-keel definitions and concepts.

2. Very brief audience Q & A on key definitions and concepts.

1. Moderated discussion between panelists.

1. Audience Q & A.

An operational view of Vessel Motions

Squat / Sinkage Heel / Roll Pitch / Wave Response

Real Scale in Calm Water

Components of Under Keel Clearance

Squat / Sinkage

Squat changes with speed and bottom contours

Increase of Draft due to List

Beam	10	2 ⁰	30
60'	0.52'	1.05'	1.57'
80'	0.70'	1.40'	2.09'
100'	0.87'	1.75'	2.62'
110'	0.96'	1.92'	2.88'
120'	1.05'	2.09'	3.14'
140'	1.22'	2.44'	3.66'
160'	1.40'	2.79'	4.19"

Wave Response

Offshore Swell height = 2m, period = 14 seconds EBB **PostPanamax** 1.18m 0.60m Handymax Swell (2.8m Hm0) Bass Štrait Port Phillip Bay -100 -150 -50 50 100 150 200 -250 -200 0 250 Distance [m] **Tidal Current (5.0kn) FLOOD** 0.47m 🎞 1.42m Swell (1.7m Hm0) Bass Strait Port Phillip Bay -100 -200 -150 -50 0 50 150 -250 100 200 250 Distance [m] **Tidal Current (3.0kn)**

Effects of Squat on Vessel Maneuverability

Directionally Stable with Pivot Point forward

Directionally Unstable with Pivot Point aft

Effects of Squat on Vessel Maneuverability

Normal Bow Pressure with Pivot Point forward

Increased Bow Pressure with Pivot Point aft

Effects of Squat on Vessel Maneuverability

Normal turning forces

Increased bow pressure and shortened steering lever make turns difficult to control

MODELING OF SHIP SQUAT IN RESTRICTED CHANNELS

Parameters used in Squat modeling and simulation predictions are as following:

-

H_{average},

- Fore Draft
- 📼 🛛 Aft Draft
- Ship Breadth
- Length Between Perpendiculars
- Length in Waterline
- Block Coefficient $C_b = \frac{1}{L_{pp}BT}$
- Mid-Frame Coefficient
- Volumetric Displacement
- Number of Propellers
- 📼 🛛 Bulb Type
- Type of Stern
- Transom stern width
- Metacentric height
- Gravity center
- 📼 Ship speed

- Yaw rate
- Type of bottom soil
- Channel Type: Unrestricted channel, Restricted channel (with flooded banks), Canal (with surface piercing banks)
- Depth of water (H average)
- 🗢 Width of the channel (W) 🛛 🖡

Flooded bank height (h₊)

$$W_{effective} = \left[\frac{7.0\mathbf{4}}{C_B^{0.85}}\right]B$$

Waterway Simulation Technology

- Channel cross-sectional area from the longitudinal symmetry plane of the ship to STBD (S_{STBD})
- Channel cross-sectional area from the longitudinal symmetry plane of the ship to PORT (S_{PORT})
- Drift angle

PANAMA CANAL SQUAT PREDICTIONS VS.

SEA-TRIALS MEASUREMENTS

Average bow or stern squat predictions to the measured DGPS values for ships

PANAMA CANAL SQUAT PREDICTIONS VS.

SEA-TRIALS MEASUREMENTS

Effects of Current on Vessel Maneuverability

A following current can increase the rate of turn

Effects of Current on Vessel Maneuverability

An opposing current can decrease the rate of turn

Swept Path

Examples

600' x 106' (Handy-max) with 1° leeway will have a 116.4' actual beam width 800' x 142' (Afro-max) with 3° leeway will have a 183.7' actual beam width 1100' x 141' (Container) with 4° leeway will have a 217.4' actual beam width 1100' x 141' (Container) with 8° leeway will have a 292.7' actual beam width

Safe Channel Width

Safer Ports don't come about by accident

River Mile

Vessel Motion Analysis

Short-Period Vessel Motions: Hui Hong

MODELING OF SQUAT IN RESTRICTED CHANNELS

Salty Laker "John B.Arid" vs Fnh (Depth Froude Number)

m/v Algoville vs. Fnh (Depth Froude Number)

Waterway Simulation Technology

Low UKC Effects on Turning

Measured Squat Values & Prediction Equation - All Ship Types

Control with Tug Assistance H 1-77/auto 2.7 Æ aV4

What Else is on the Bottom?

Fig 20 : Possibly sunken buoy

How Important in Understanding Bank Suction?

VMAX UKC Upbound 9/16/2002 LOA=333.49m,B=70m,T=10.99m

